Friday, March 7, 2008

`int_1^3 r^3 ln(r) dr` Evaluate the integral

`int_1^3 r^3 ln(r) dr`


To evaluate, apply integration by parts `int udv = uv - vdu` .


So let


`u = ln r`


and 


`dv = r^3 dr`


Then, differentiate u and integrate dv.


`u=1/r dr`


and


`v= int r^3 dr=r^4/4`


Plug-in them to the formula. So the integral becomes:


`int r^3 ln(r) dr`


`= ln (r)* r^4/4 - int r^4/4 * 1/rdr`


`= (r^4 ln(r))/4 - 1/4 int r^3 dr`


`= (r^4 ln(r))/4 - 1/4*r^4/4 `


`=(r^4 ln(r))/4 - r^4/16`


And, substitute the limits of the integral.


`int_1^3 r^3 ln(r) dr`


`= ((r^4ln(r))/4 - r^4/16) |_1^3`


`= ( (3^4ln(3))/4 - 3^4/16) - ((1^4ln(1))/4-1^4/16)`


`= (3^4 ln(3))/4-3^4/16 +1/16`


`= (81ln(3))/4-81/16+1/16`


`=(81ln(3))/4-80/16`


`=(81ln(3))/4-5`



Therefore,  `int_1^3 r^3 ln(r) dr = (81ln(3))/4-5` .

No comments:

Post a Comment