`int_1^3 r^3 ln(r) dr`
To evaluate, apply integration by parts `int udv = uv - vdu` .
So let
`u = ln r`
and
`dv = r^3 dr`
Then, differentiate u and integrate dv.
`u=1/r dr`
and
`v= int r^3 dr=r^4/4`
Plug-in them to the formula. So the integral becomes:
`int r^3 ln(r) dr`
`= ln (r)* r^4/4 - int r^4/4 * 1/rdr`
`= (r^4 ln(r))/4 - 1/4 int r^3 dr`
`= (r^4 ln(r))/4 - 1/4*r^4/4 `
`=(r^4 ln(r))/4 - r^4/16`
And, substitute the limits of the integral.
`int_1^3 r^3 ln(r) dr`
`= ((r^4ln(r))/4 - r^4/16) |_1^3`
`= ( (3^4ln(3))/4 - 3^4/16) - ((1^4ln(1))/4-1^4/16)`
`= (3^4 ln(3))/4-3^4/16 +1/16`
`= (81ln(3))/4-81/16+1/16`
`=(81ln(3))/4-80/16`
`=(81ln(3))/4-5`
Therefore, `int_1^3 r^3 ln(r) dr = (81ln(3))/4-5` .
No comments:
Post a Comment