Given `f(theta)=sec^2(theta/2), [0,pi/2]`
Average Value Formula`=1/(b-a)int_a^bf(x)dx`
`f_(ave)=1/(pi/2-0)int_0^(pi/2)sec^2(theta/2)(d theta)`
Integrate using the u-substitution method.
Let `u=theta/2`
`(du)/(d theta)=1/2`
`d theta=2du`
`f_(ave)=1/(pi/2)int_0^(pi/2)sec^2(u)(d theta)`
`=2/piint_0^(pi/2)sec^2(u)(2du)`
`=(2/pi)*2int_0^(pi/2)sec^2(u)du`
`=4/pi[tan(u)]_0^(pi/2)`
`=4/pi[tan((pi/2)/2)-tan(0/2)]`
`=4/pi[tan(pi/4)-tan(0)]`
`=4/pi[1-0]`
`=4/pi=1.273`
The average value is `4/pi` or 1.273.
No comments:
Post a Comment