Monday, May 2, 2011

`bbv = 8(cos(135^@) bbi + sin(135^@) bbj)` Find the magnitude and direction angle of the vector `bbv`.

The magnitude of a vector `v=v_x*i + v_y*j` is given by the following formula, such that:


`|v| = sqrt(v_x^2+v_y^2)`


`|v| = sqrt(8cos^2 135^o + 8sin^2 135^o)`


`|v| = sqrt(8(cos^2 135^o + sin^2 135^o))`


`|v| = sqrt(8*1)`


`|v| = 2sqrt2`


You may evaluate the direction angle of the vector v, such that:


`tan alpha = (v_y)/(v_x)`


`tan alpha = (8 sin 135^o)/(8 cos 135^o)`


`tan alpha = tan 135^o => alpha = 135^o`


Hence, evaluating the magnitude and the direction angle of the vector v, yields `|v| =2sqrt2` and  `alpha = 135^o.`

No comments:

Post a Comment