The magnitude of a vector `v=v_x*i + v_y*j` is given by the following formula, such that:
`|v| = sqrt(v_x^2+v_y^2)`
`|v| = sqrt(8cos^2 135^o + 8sin^2 135^o)`
`|v| = sqrt(8(cos^2 135^o + sin^2 135^o))`
`|v| = sqrt(8*1)`
`|v| = 2sqrt2`
You may evaluate the direction angle of the vector v, such that:
`tan alpha = (v_y)/(v_x)`
`tan alpha = (8 sin 135^o)/(8 cos 135^o)`
`tan alpha = tan 135^o => alpha = 135^o`
Hence, evaluating the magnitude and the direction angle of the vector v, yields `|v| =2sqrt2` and `alpha = 135^o.`
No comments:
Post a Comment