Monday, August 12, 2013

The derivative of `y=2^(x^3+2x)`

We will use the following rules and formulas:


  • Chain rule `(f(g(x)))'=f'(g(x))cdot g'(x)`

  • Derivation of exponential function `(a^x)'=a^x ln a`

  • Derivation of sum `(f(x)+g(x))'=f'(x)+g'(x)` 

  • Derivation of power `(x^n)'=nx^(n-1)`

First we apply chain rule and derivation of exponential function.


`y'=2^(x^3+2x)ln2cdot(x^3+2x)'`


Now we apply derivation of sum.


`=2^(x^3+2x)ln2cdot((x^3)'+(2x)')`


Now we apply derivation of power.


`=2^(x^3+2x)ln2cdot(3x^2+2)`


Therefore, the solution is `y'=2^(x^3+2x)ln2cdot(3x^2+2)` 

No comments:

Post a Comment