We will use the following rules and formulas:
- Chain rule `(f(g(x)))'=f'(g(x))cdot g'(x)`
- Derivation of exponential function `(a^x)'=a^x ln a`
- Derivation of sum `(f(x)+g(x))'=f'(x)+g'(x)`
- Derivation of power `(x^n)'=nx^(n-1)`
First we apply chain rule and derivation of exponential function.
`y'=2^(x^3+2x)ln2cdot(x^3+2x)'`
Now we apply derivation of sum.
`=2^(x^3+2x)ln2cdot((x^3)'+(2x)')`
Now we apply derivation of power.
`=2^(x^3+2x)ln2cdot(3x^2+2)`
Therefore, the solution is `y'=2^(x^3+2x)ln2cdot(3x^2+2)`
No comments:
Post a Comment