Sunday, September 8, 2013

`A = 58^@, a = 11.4, b = 12.8` Use the law of sines to solve (if possible) the triangle. If two solutions exist, find both. Round your...

Given: `A=58^@, a=11.4, b=12.8`


Law of Sines  `a/sin(A)=b/sin(B)=c/sin(C)`


Triangle #1


`11.4/sin(58)=12.8/sin(B)=c/sin(C)`



`11.4/sin(58)=12.8/sin(B)`


`sin(B)=[12.8sin(58)]/11.4`


`sin(B)=.9522`


`B=arcsin(.9522)`


`B=72.21^@`



`C=180-58-72.21`


`C=49.79^@`



`11.4/sin(58)=c/sin(49.79)`


`c=[11.4sin(49.79)]/sin(58)`


`c=10.27`



Triangle #2


`B=180-72.20`


`B=107.80^@`



`C=180-58-107.80`


`C=14.20^@`



`11.4/sin(58)=c/sin(14.20)`


`c=[11.4sin(14.20)]/sin(58)`


`c=3.30`

No comments:

Post a Comment