You need to use the substitution -`3t = u` , such that:
`-3t= u => -3dt = du => dt = -(du)/3`
Replacing the variable, yields:
`int t*e^(-3t) dt = (1/9)int u*e^u du`
You need to use the integration by parts such that:
`int fdg = fg - int gdf`
`f = u => df = du`
`dg = e^u=> g = e^u`
`(1/9)int u*e^u du = (1/9)(u*e^u - int e^u du)`
`(1/9)int u*e^u du = (1/9)(u*e^u - e^u) + c`
Replacing back the variable, yields:
`int t*e^(-3t) dt = (1/9)((-3t)*e^(-3t) - e^(-3t)) + c`
Hence, evaluating the integral, using substitution, then integration by parts, yields `int t*e^(-3t) dt = ((e^(-3t))/9)(-3t - 1) + c`
No comments:
Post a Comment