`a_3=19`
`a_15=-1.7`
Let `a_1` be the first term and d be the common difference of the sequence.
`a_15=a_1+14d`
`a_1+14d=-1.7` ---------- (1)
`a_3=a_1+2d`
`a_1+2d=19` ----------- (2)
Now let's solve the equations 1 and 2 to get the `a_1` and d,
Subtract equation 2 from equation 1,
`14d-2d=-1.7-19`
`12d=-20.7`
`d=-20.7/12`
`d=-1.725`
Plug the value of d in equation 2,
`a_1+2(-1.725)=19`
`a_1-3.45=19`
`a_1=19+3.45`
`a_1=22.45`
`a_2=a_1+d`
`a_2=22.45+(-1.725)`
`a_2=20.725`
`a_3=a_2+d`
`a_3=20.725+(-1.725)`
`a_3=19`
`a_4=a_3+d`
`a_4=19+(-1.725)`
`a_4=17.275`
`a_5=a_4+d`
`a_5=17.275+(-1.725)`
`a_5=15.55`
So the first five terms of the sequence are 22.45,20.725,19,17.275 and 15.55
No comments:
Post a Comment