Saturday, October 19, 2013

lim(sqx^2+2 - sqx^2-6x) for x->infinity

Hello!


I think you mean `sqrt(x^2+2)-sqrt(x^2-6x).`


To remove the radicals, let us multiply the top and the bottom of this expression by the sum of the square roots. This will remove the square roots from the numerator.


`sqrt(x^2+2)-sqrt(x^2-6x)=((sqrt(x^2+2)-sqrt(x^2-6x))*(sqrt(x^2+2)+sqrt(x^2-6x)))/(sqrt(x^2+2)+sqrt(x^2-6x)).`


This is equal to


`((x^2+2)-(x^2-6x))/(sqrt(x^2+2)+sqrt(x^2-6x))=(6x+2)/(sqrt(x^2+2)+sqrt(x^2-6x)).`


Now if we multiply the top and the bottom by 1/x we can simplify this into something we can take the limit of.


`(6x+2)/(sqrt(x^2+2)+sqrt(x^2-6x))=(1/x(6x+2))/(1/x (sqrt(x^2+2)+sqrt(x^2-6x)))=(6+2/x)/(sqrt((x^2+2)/x^2)+sqrt((x^2-6x)/x^2))`


It is in turn equal to  `(6+2/x)/(sqrt(1+2/x^2)+sqrt(1-6/x))`


and here all terms have limits:


`(6+0)/(sqrt(1+0)+sqrt(1-0))=3` when `x->+oo,` and `-(6+0)/(sqrt(1+0)+sqrt(1-0))=-3` when `x->-oo.`

No comments:

Post a Comment